#### P.D.E.A's. Prof. Ramkrishna More College, Akurdi, Pune411044

# Syllabus Framework and Design of Electronics for

### B. Sc. (Comp. Sci.) and B.C.A. (Sci.) under Autonomy and NEP-2023

| Sem. | Major Elective<br>Courses                                              | Minor<br>Courses                              | VSC                                                      | GE/OE                                        |
|------|------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------|----------------------------------------------|
|      |                                                                        | First Year Certific                           | ate Course                                               |                                              |
| I    |                                                                        | -                                             | To<br>B.Sc. (Comp. Sci.)<br>1 Theory From<br>Electronics | 2 Theory<br>From Electronics<br>in Basket    |
| Π    |                                                                        | 1 Theory<br>From Electronics                  |                                                          | 2 Theory<br>From Electronics<br>In Basket    |
|      |                                                                        | Second Year Grad                              | uate Diploma                                             |                                              |
| III  |                                                                        | 1 Theory +<br>1 Practical<br>From Electronics |                                                          | 1 Practical<br>From Electronics<br>In Basket |
| IV   |                                                                        | 1 Theory +<br>1 Practical<br>From Electronics | -                                                        | 1 Practical<br>From Electronics<br>In Basket |
|      |                                                                        | Third Year Gradu                              | ate Degree                                               |                                              |
| v    | To<br>B.Sc. (Comp. Sci.)<br>1 Theory + 1 Practical<br>From Electronics | 1 Theory +<br>1 Practical<br>From Electronics |                                                          | -                                            |
| VII  | To<br>B.Sc. (Comp. Sci.)<br>1 Theory + 1 Practical<br>From Electronics | 1 Theory +<br>1 Practical<br>From Electronics | -                                                        | -                                            |

#### **Course Codes for various courses**

| Sem.                       | Major Elective<br>Courses    | Minor Courses            | VSC       | GE/OE                    |  |
|----------------------------|------------------------------|--------------------------|-----------|--------------------------|--|
|                            | 1                            | First Year Certificate C | ourse     |                          |  |
| Ι                          | -                            | -                        | CSVST-111 | ELCOET-111<br>ELCOET-112 |  |
| Π                          | -                            | ELCMIT-121               | -         | ELCOET-121<br>ELCOET-122 |  |
|                            | Second Year Graduate Diploma |                          |           |                          |  |
| III                        | -                            | ELCMIT-231<br>ELCMIP-232 | -         | ELCOEP-231               |  |
| IV                         | -                            | ELCMIT-241<br>ELCMIP-242 | -         | ELCOEP-241               |  |
| Third Year Graduate Degree |                              |                          |           |                          |  |
| V                          | CSMAET-351<br>CSMAEP-352     | ELCMIT-351<br>ELCMIP-352 | -         | -                        |  |
| VII                        | CSMAET-361<br>CSMAEP-362     | ELCMIT-361<br>ELCMIP-362 | -         | -                        |  |

#### P.D.E.A's. Prof. Ramkrishna More College, Akurdi, Pune-411044 Syllabus Framework and Design of Electronics for B. Sc. (Comp. Sci.) and B.C.A. (Sci.) under Autonomy and NEP-2023 Courses Codes, Generic name and Title of the paper of Electronics

| Sem | Course code | Generic name                  | Title                                            | Credits |
|-----|-------------|-------------------------------|--------------------------------------------------|---------|
| Ι   | CSVST-111   | Vocational Skill Theory       | Computer Architecture and<br>Organization        | 2       |
|     |             | Electro                       | onics                                            |         |
| Ι   |             |                               |                                                  |         |
| II  | ELCMIT-121  | Minor ElectronicsTheory-1     | Fundamentals of Analogue and digital electronics | 2       |
| III | ELCMIT-231  | Minor ElectronicsTheory-2     | Analogue and digital Systems                     | 2       |
|     | ELCMIP-232  | Minor ElectronicsPractical-1  | Electronics practical Lab1                       | 2       |
| IV  | ELCMIT-241  | Minor ElectronicsTheory-3     | Computer Instrumentation                         | 2       |
| 1 V | ELCMIP-242  | Minor ElectronicsPractical-2  | Electronics practical Lab2                       | 2       |
| v   | ELCMIT-351  | Minor ElectronicsTheory-4     | Principals of Communication<br>Systems           | 2       |
| ·   | ELCMIP-352  | Minor ElectronicsPractical-3  | Electronics practical Lab3                       | 2       |
| VI  | ELCMIT-361  | Minor ElectronicsTheory-5     | Microcontroller and embedded systems             | 2       |
| VI  | ELCMIP-362  | Minor Electronics Practical-4 | Electronics practical Lab4                       | 2       |

|    | Major Elective |                                                            |                                                 |   |  |
|----|----------------|------------------------------------------------------------|-------------------------------------------------|---|--|
| v  | CSMAET-351     | Elective Electronics for<br>Computers Science              | Internet of Things                              | 2 |  |
|    | CSMAEP-352     | Elective Electronics Practical paper for Computers Science | Practical's on IoT                              | 2 |  |
| VI | CSMAET-361     | Elective Electronics for<br>Computers Science              | Architecture and<br>Programming of Raspberry Pi | 2 |  |
|    | CSMAEP-362     | Elective Electronics Practical paper for Computers Science | Practical's on Raspberry Pi                     | 2 |  |

### Semester II

# Fundamentals of Analogue and Digital ElectronicsCourse code: ELCMIT-121No. of Credits: 2

| Unit     | Unit Title and Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| No.      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Modu     | ile 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1        | Semiconductor Diodes (4)<br>Semiconductor, P and N type semiconductors, Formation of PN junction diode, it's<br>working,ForwardandReversebiascharacteristics,Zenerdiode:workingprinciple,breakdownmechani<br>sm and characteristics, Working principle of Light emitting diode, photo diode, opto - coupler,<br>Solar cell working principle and characteristics                                                                                                                                                                                                                                    |
| 2        | <b>Bipolar Junction Transistor(BJT) (7)</b><br>Symbol, types, construction, working principle of BJT,Transistorconfigurations-<br>CB,CC(onlyconcept),CEconfiguration:inputandoutputcharacteristics,ConceptofBiasing,Potential<br>Dividerbias,Transistorasamplifier, Transistor as a switch, RC coupled single stage transistor<br>amplifier, (Concept of Gain and Bandwidth expected),                                                                                                                                                                                                              |
| 3        | <b>MOSFET (4)</b><br>FET and MOSFET: types, Working principle, Characteristics, Application of FET and MOSFET as a Switch.                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Modu     | ıle 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Ι        | Number system and codes (5)<br>Decimal, binary, octal, hexadecimal number systems, Conversion of numbers from one number<br>system to another including decimal / binary points, Binary addition, subtraction, multiplication,<br>division, 1's and 2's complement method of subtraction BCD code numbers and their limitations,<br>Concept of parity, Error detection using parity, ASCII code                                                                                                                                                                                                     |
| 2        | Logic gates and Boolean Algebra (10)<br>Introduction to analog signals and digital signals, Positive and Negative logic, Logic gates: definition,<br>symbols, truth tables, Boolean expressions, pulsed operation of NOT, OR, AND, NAND, NOR, EX-OR,<br>EX-NOR gates<br>Rules and laws of Boolean algebra, logic expression, De Morgan's theorems, their proof, Sum of products<br>form (min. terms), Product of sum form (max. terms), Simplification of Boolean expressions using<br>Boolean algebra and Karnaugh map up to 4 variables. Conversion of Boolean equations into digital<br>circuits |
| Text     | and Reference Books:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1.       | Malvino Electronics Principles By- Malvino A. P. Ed-6, McGraw Hill publication.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2.<br>3. | Modern Digital Electronics By- Jain R.P. Ed-4, Pub- Tata McGraw Hill publication India Digital Fundamentals By FloydT.M.Ed-11,Pub-Person Education Publication.                                                                                                                                                                                                                                                                                                                                                                                                                                     |

#### **Course Outcomes (COs): On completion of the course, the students will be able to:**

| CO1:              | Study and Explain construction details of various semiconductor devices.           |
|-------------------|------------------------------------------------------------------------------------|
| CO2:              | Explain operation and characteristics behavior of various semiconductor devices.   |
| CO3:              | Explain needs and operation details of elementary electronic circuits and systems. |
| CO4:              | Get familiar with concepts of digital electronics.                                 |
| CO5:              | Learn number systems and their representation.                                     |
| CO6:              | Understand basic logic gates, Boolean algebra.                                     |
| $\sim$ $\sim$ $-$ |                                                                                    |

CO7: Simplify and design simple digital systems using Boolean algebra and K-Map.

#### **Semester III**

#### Analogue and Digital Systems

#### Course code: ELCMIT-231

No. of Credits: 2

| Unit No. | Unit title and Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Module 1 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Ι        | <b>Combinational Circuits (5)</b><br>Half adder, Full adder circuit and its operation, Parallel binary adder, Half Subtractor, and full Subtractor Multiplexer(2:1 and 4:1), De-multiplexer (1:2 and 1:4), Encoder, Priority encoder, Decoder, BCD to seven segment decoder                                                                                                                                                                                                                                                                                                                                    |
| 2        | Sequential Circuits (8)<br>Difference between combinational and sequential circuits, the Concept of clock and types,<br>synchronous and asynchronous circuits, Latch, S-R-latch, D-latch, S-R, J-K, and D flip-<br>flop their operation and truth tables, race around condition, Master-slave JK flip flop, T flip<br>flop (Timing diagram and truth tables).<br>The basic building block of the counter, Ripple counter, up counter, down counter, Up- Down<br>counter, Concept of modulus counters, Decade counter, Shift registers: SISO, SIPO, PISO,<br>PIPO, Ring counter, Universal 4-bit shift register |
| 3        | Semiconductor memory (5)<br>Memory Architecture, Memory parameters (Access time, speed, capacity, cost), Concept of<br>Address Bus, Data Bus, Control Bus, Memory Hierarchy, Types of semiconductor Memories,<br>Data Read/ Write process, Vertical and Horizontal Memory Expansion, Role of Cache<br>memory,                                                                                                                                                                                                                                                                                                  |
| Module 2 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1        | <b>POWERSUPPLY (7)</b><br>Block Diagram of Regulated Power Supply, Rectifiers (half wave, wave, Bridge), rectifier<br>with capacitor-filter, Use of Zener Diode as a Voltage Regulator, IC 78XX and 79XX as<br>regulator, Block Diagram and explanation of SMPS, Block diagram and explanation of UPS                                                                                                                                                                                                                                                                                                          |
| 2        | <b>OSCILLATORS (5)</b><br>Concept of Feedback, Bark hauson Criteria, Low frequency Phase shift oscillator, High frequency crystal oscillator, IC555 as Astable multivibrator used as square wave generator                                                                                                                                                                                                                                                                                                                                                                                                     |
|          | Reference Books:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1.       | Malvino Electronics Principles By- Malvino A. P. Ed-6, Pub-McGraw Hill publication.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 2.       | Digital Logic and Computer Design By -M. Morris Mano Ed-7 Pub-PHI Publication.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 3.       | Modern Digital Electronics By Jain R.P. Ed-4, Pub- Tata McGraw Hill publication India                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

#### Course Outcomes (COs): On completion of the course, the students will be able to:

CO1: Explain needs and operation details of elementary electronic circuits and systems such as power supplies and oscillators etc.

CO2: Study and design simple combinational circuits (constriction and operations) using digital techniques

CO3: Study and design simple sequential circuits (constriction and operations) using digital techniques.

CO4: Understand concept of Clock and timing diagram in sequential circuits used in digital systems.

CO4: Design and Explain working principles of various sequential circuits used in digital systems.

CO5: Understand and illustrate different types semiconductor memory.

CO6: Understand Memory organization, and need and methods of memory expansion.

# Semester III

# **Electronics practical Lab-1**

#### **Course Code: ELCMIP-232**

| Sr. No.    | Title of Experiment / Practical                                                           |  |  |
|------------|-------------------------------------------------------------------------------------------|--|--|
| Total 10 e | Total 10 experiments are to be performed by student. Any five experiments from each group |  |  |
|            | Group A                                                                                   |  |  |
| 1.         | Study of different types of diodes (PN junction diode, LED, Photo diode)                  |  |  |
| 2.         | Study of rectifier (Half, Full and Bridge) circuits along with filters                    |  |  |
| 3.         | Study of Zener diode as Voltage regulator.                                                |  |  |
| 4.         | Study of CE characteristics of Bipolar Junction Transistor                                |  |  |
| 5.         | Study of characteristics of JFET / MOSFET                                                 |  |  |
| б.         | Study of transistor as a switch.                                                          |  |  |
| 7.         | Study of RC coupled transistor amplifier.                                                 |  |  |
| 8.         | Study of IC 555 as an Astable multivibrator.                                              |  |  |
| 9.         | Study of Transistorized Phase shift Oscillator.                                           |  |  |
|            | Group B                                                                                   |  |  |
| 1.         | Study of different types of logic gates and verification of De-Morgan's laws.             |  |  |
| 2.         | Interconversion of logic gates using NAND and NOR gates.                                  |  |  |
| 3.         | Study of parity code generator and error detector.                                        |  |  |
| 4.         | Study of Half adder and full adder                                                        |  |  |
| 5.         | Study of Multiplexer and De-multiplexer (4:1 MUX and 1:4 DEMUX)                           |  |  |
| 6.         | Study of SR and JK flip flops (T and D as modification)                                   |  |  |
| 7.         | Study of 4-bit UP/DOWN counter.                                                           |  |  |
| 8.         | Study of Modulo counter using IC 7490. (Mod-2, Mod-5 and Mod 10)                          |  |  |
| 9.         | Study of 4-bit Shift register.                                                            |  |  |

| Cours | Course Outcomes (COs): On completion of the course, the students will be able to:         |  |  |
|-------|-------------------------------------------------------------------------------------------|--|--|
| CO1   | Describe the circuit diagrams using different symbols various components.                 |  |  |
| CO2   | To design and connect experimental board circuit.                                         |  |  |
| CO3   | Discuss the working of circuits of individual experiments.                                |  |  |
| CO4   | To acquire skills of studying and analyzing the responses of electronic circuits.         |  |  |
| CO5   | Analyze observations of each experiment based on the aim and objectives of an experiment. |  |  |
| CO6   | Evaluate observed outputs with expected theoretical outputs.                              |  |  |
| CO7   | Discuss the need and requirement of electronic equipment in daily life.                   |  |  |
| CO8   | Reconstruct the given circuit to obtain an electronic gadget.                             |  |  |

#### Semester IV

#### **Computer Instrumentation**

Course code: ELCMIT-241

No. of Credits: 2

| Unit     | Unit title and Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| No.      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Module   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1        | Sensors and Transducers (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | Introduction, Need and Definition of sensors and transducers, Classification of sensors:<br>Active and passive sensors, Specifications of sensor: Accuracy, range, linearity, sensitivity,<br>resolution, reproducibility, Temperature and Humidity sensors: Thermistor, LM-35, AD590<br>and DHT 11, Piezoelectric sensor, Optical sensor (LDR), Displacement sensor (LVDT),<br>Passive Infrared sensor (PIR), Concept of Touch sensor and Ultrasonic sensor. (Pin diagrams,<br>features and applications) |
| 2        | Operational Amplifier (8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|          | Operational Amplifier: Block diagram, symbol, Characteristics of OP-AMP, Concept of virtual ground, Inverting and Non-inverting amplifier, OPAMP as an adder and subtractor, OP-AMP as an integrator and differentiator, Three OP-AMP instrumentation amplifier.                                                                                                                                                                                                                                           |
| 3        | Signal Conditioning Circuits (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|          | Introduction and need of signal conditioning, voltage divider circuits, bridge circuits, filters,                                                                                                                                                                                                                                                                                                                                                                                                          |
|          | Sample and hold circuit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Module 2 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1        | DATACONVERTERS (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|          | Need of Data converters, Digital to Analog converters (DAC) and Analog to Digital converter, Parameters of DAC, Types of DACs: weighted resistive network and R-2R ladder network. Study of DAC IC-0808 (Block diagram, Parameters)<br>Parameters of ADC, Types of ADCs: Flash ADC, successive approximation ADC. Dual slop                                                                                                                                                                                |
|          | ADC. Study of ADC IC-0809 (Block diagram, Parameters).                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2        | <b>Basics of Computer System (5)</b><br>Basic Computer Organization, CPU block diagram and explanation of each block, Concept of<br>Stack & its organization, I/O organization: need of interface, block diagram of general I/O<br>interface.                                                                                                                                                                                                                                                              |
| Text ar  | nd Reference Books:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1.       | Malvino Electronics Principles By- Malvino A. P. Ed-6, McGraw Hill publication.                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 2.       | Modern Digital Electronics by Jain R.P. Ed-4, Pub- Tata McGraw Hill publication India                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 3.       | Digital Logic and Computer Design By -M. Morris Mano Ed-7 Pub PHI Publication                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 4.       | Process control Instrumentation Technology By - C.D. Johnson Ed-8 Pub-Pearson Publication.                                                                                                                                                                                                                                                                                                                                                                                                                 |

#### Course Outcomes (COs): On completion of the course, the students will be able to:

CO1: Define sensor and its parameters.

CO2: Classify Sensors and discuss the need for signal conditioning circuits.

CO3: Concept of Operational amplifier and its use in signal conditioning circuits.

CO4: Analyze different types of ADCs and DACs.

CO5: Compare the frequency response of different types of filters and discuss the need for selecting filters.

CO6: Understand different blocks needed to design digital computer system.

CO7: Understand and illustrate block diagram of central processing unit.

CO8: Understand I/O organization and need of interfacing with general I/O interface.

# Semester IV

# **Electronics practical Lab-2**

# Course Code: ELCMIP-242

| Sr. no. | Title of Experiment/ Practical                                                            |  |  |
|---------|-------------------------------------------------------------------------------------------|--|--|
| Total 1 | Total 10 experiments are to be performed by student. Any five experiments from each group |  |  |
|         | Group A                                                                                   |  |  |
| 1       | Study of LDR characteristics.                                                             |  |  |
| 2       | Study of Thermistor / AD-590 / DHT 11 / LM 35.                                            |  |  |
| 3       | Study of LVDT as a displacement sensor.                                                   |  |  |
| 4       | Study of frequency response of active filter circuits(RC filters)                         |  |  |
| 5       | Study of Inverting and Non-inverting amplifier                                            |  |  |
| 6       | Study of Adder and Subtractor using OP-Amp.                                               |  |  |
| 7       | Study of Integrator and differentiator using OP-Amp.                                      |  |  |
| 8       | Study of Sample and Hold circuit.(Using suitable IC e.g. IC1496)                          |  |  |
| 9       | Study of Switch Mode Power Supply (SMPS).(Using suitable IC e.g. IC 3524)                 |  |  |
| 10      | Study of Three OPAMP Instrumentation Amplifier                                            |  |  |
|         | Group B                                                                                   |  |  |
| 1       | Study of Crystal Oscillator using inverters.                                              |  |  |
| 2       | Study of Universal 4-bit adder/Subtractor.                                                |  |  |
| 3       | Study of RAM and read/write action of RAM (using suitable IC e.g. IC 7489).               |  |  |
| 4       | Study of Diode matrix ROM and read action of ROM.                                         |  |  |
| 5       | Study of Priority Encoder using IC 74148/74147.                                           |  |  |
| 6       | Study of R-2R Digital to Analog Converter.                                                |  |  |
| 7       | Study of 3-bit Flash Analog to Digital Converter.                                         |  |  |
| 8       | Study of BCD to 7-segment Display                                                         |  |  |
| 9       | Study of Keyboard matrix encoder                                                          |  |  |

| Cou | Course Outcomes (COs): On completion of the course, the students will be able to:         |  |  |
|-----|-------------------------------------------------------------------------------------------|--|--|
| CO1 | Identify different analog and digital electronic circuits.                                |  |  |
| CO2 | Identify different sensors and analyze their response.                                    |  |  |
| CO3 | Recognize need of various circuit elements in analogue and digital systems.               |  |  |
| CO4 | To acquire skills of studying and analyzing the responses of electronic circuits.         |  |  |
| CO5 | Analyze observations of each experiment based on the aim and objectives of an experiment. |  |  |
| CO6 | Evaluate observed outputs with expected theoretical outputs.                              |  |  |
| CO7 | Discuss the need and requirement of electronic equipment in daily life.                   |  |  |
| CO8 | Acquirers the skill of design and build his /her simple circuit ideas                     |  |  |

# T. Y. B. Sc. (C. S.) Semester V Principles of Microcontroller and Embedded Systems Course code: ELCMIT-351 No.

No. of Credits: 2

| Unit No. | Title and Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Module   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1        | <ul> <li>Basics of Microcontroller &amp; Intel 8051 architecture [8]</li> <li>Introduction to microcontrollers, difference in microcontroller and microprocessor. Architecture of 8051:</li> <li>Internal block diagram of 8051: ALU, PC, DPTR, PSW, Latch, SFRs, General purpose registers, pin diagram and pin functions of 8051, I/O ports: Port0, Port1, Port2, and Port3. Structure, Operation and specifications of I/O Ports,</li> <li>Memory organization: Program and Data Memory Map, Internal RAM organization, Internal ROM. External Memory Interface.</li> <li>Stack, Stack Pointer and Stack operation.</li> </ul>                                                                                                                                               |
| 2        | <ul> <li>Programming model of 8051 [9]</li> <li>Instruction set: Instruction classification, Data Transfer, Arithmetic, Logical, Branching, Machine Control, Stack operations and Boolean operations.</li> <li>Addressing Modes: Immediate, register, direct, indirect and relative,</li> <li>Assembler directives: ORG, DB, EQU, END, CODE, DATA.</li> <li>Software development cycle: editor, assembler, simulator, cross-compiler, linker, compiler.</li> <li>8051 Assembly language programming and C programming: arithmetic and logical programming, Looping, Counting, Time delay loop, Look-up table, Bit addressability, I/O Bit &amp; Byte programming</li> </ul>                                                                                                     |
| Modul    | e 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 3        | Serial communication [8]<br>Timers & Counters: Timers/Counters SFRs: TMOD, TCON logic diagram and its operation in various<br>Timer modes: mode 0, mode 1 and mode 2. Programming for time delay<br>Interrupt: Introduction to interrupt, Interrupt types Interrupt structure, SFRs - Interrupt enable register (IE)<br>and interrupt priority register(IP). vector address, priority and operation. ISR – Interrupt Service Routine.<br>Serial Communication: Definition, various modes Synchronous and asynchronous, baud rate for serial<br>communication. Configuration, using SFRs - SCON, SBUFF, PCON<br>Programming serial port without interrupt, Use of timer/counter<br>Programming serial port with interrupt: Configuration of interrupts for serial communication, |
| 4        | <ul> <li>Applications of 8051 using Embedded 'C' [5]</li> <li>Interfacing Input Devices: Pushbutton, thumb wheel switch ADC, LM35, rain sensor.</li> <li>Interfacing Output Digital Devices: LED, 7-segment LED display, LCD display, DC and Stepper motor, DAC.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Text and | l Reference Books:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1.<br>2. | 8051 microcontroller and Embedded system using assembly and C:Mazidi, Mazidi and McKinley, Pearson pub.<br>The 8051 microcontroller Architecture, programming and applications:K.Uma Rao and AndhePallavi,<br>Pearson pub                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

|             | Course Outcomes (COs): On completion of the course, the students will be able to:                                         |  |
|-------------|---------------------------------------------------------------------------------------------------------------------------|--|
| CO1:        | <b>Demonstrate</b> the basic concepts of microcontrollers and differentiate between microcontrollers and microprocessors. |  |
| CO2:        | Familiarize with the 8051 instruction set, including the classification of instructions (data transfer, arithmetic,       |  |
|             | logical, branching, machine control, etc.).                                                                               |  |
| CO3:        | Understand the operation of timers and counters in 8051, including the programming for various timer modes (mode          |  |
|             | 0, mode 1, mode 2) and time delay generation.                                                                             |  |
| <b>CO4:</b> | <b>Develop</b> 8051 Assembly and 'C' programs using 8051 instruction set for embedded systems using microcontroller.      |  |
| CO5:        | Interface various input devices (pushbutton, thumb wheel switch, LM35, rain sensor etc. ) with the 8051 and               |  |
|             | develop programs for their control.                                                                                       |  |
| CO6:        | Interface various output devices (DAC, LED, LCD, SSD, stepper motor, DC motor etc.) with the 8051 and develop             |  |
|             | programs for their control.                                                                                               |  |
| CO7:        | Design and implement application circuits using the 8051.                                                                 |  |

# T. Y. B. Sc. (C. S.) Semester V

#### **Electronics Practical Lab-3**

#### Course Code: ELCMIP-352

| Sr. No.                                                                                   | Title of Experiment/ Practical                                                                                                                     |  |
|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Total 10 experiments are to be performed by student. Any five experiments from each group |                                                                                                                                                    |  |
|                                                                                           | Group A                                                                                                                                            |  |
| 1                                                                                         | Write and execute programs based on Arithmetic Instructions (8/16 bit Addition, Subtraction, Multiplication, Division) in Assembly and Embedded C. |  |
| 2                                                                                         | Write and execute programs based on Logical Instructions (AND, OR, Rotate, etc.) in Assembly and Embedded C                                        |  |
| 3                                                                                         | Write and execute programs based on various addressing modes and assembler directives.                                                             |  |
| 4                                                                                         | Write and execute programs based on Branch Instructions in Assembly and Embedded C.                                                                |  |
| 5                                                                                         | Write and execute programs based on Looping, Counting, and Indexing concept in Assembly and Embedded C.                                            |  |
| 6                                                                                         | Write and execute program to introduce delay (e.g.1ms Delay) using Timer/Counter in Assembly and Embedded C.                                       |  |
| 7                                                                                         | Write and execute programs to generate various waveforms (square, triangular, saw tooth, trapezoidal) using timers in Assembly and C.              |  |
| 8                                                                                         | Write and execute programs to turn ON/OFF LED using interrupt in Assembly and Embedded C.                                                          |  |
| 9                                                                                         | Write and execute programs to interface 4x4 matrix keypad in Assembly and Embedded C.                                                              |  |
|                                                                                           | Group B (Based on Embedded 'C')                                                                                                                    |  |
| 1                                                                                         | Interfacing of thumbwheel & seven segment display to 8051 microcontroller                                                                          |  |
| 2                                                                                         | Interfacing LCD to 8051Microcontroller                                                                                                             |  |
| 3                                                                                         | Interfacing temperature sensor LM35/DHT11 and displaying temperature by configuring ADC (ADS1115).                                                 |  |
| 4                                                                                         | Event counter using opto-coupler, seven segment LED/LCD display interface to 8051Microcontroller                                                   |  |
| 5                                                                                         | Waveform generation using DAC Interface to 8051Microcontroller                                                                                     |  |
| 6                                                                                         | Interface stepper motor and rotate in clockwise and anticlockwise.                                                                                 |  |
| 7                                                                                         | ON/OFF temperature controller using LM35/DHT11 and switching relay.                                                                                |  |
| 8                                                                                         | Traffic light controller using 8051 microcontroller.                                                                                               |  |
| 9                                                                                         | Speed control of DC motor.                                                                                                                         |  |

| Course Outcomes (COs): On completion of the course, the students will be able to: |                                                                                                     |
|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| CO1                                                                               | Familiarize with assembler directives and syntax of embedded C programs used for 8051               |
|                                                                                   | Controller.                                                                                         |
| CO2                                                                               | Write programs with data transfer, arithmetic, logical, branching, machine control, instructions of |
|                                                                                   | the 8051 instruction set.                                                                           |
| CO3                                                                               | Write Functions to introduce delay (e.g. 1ms Delay) using Timer/Counter in Assembly and             |
|                                                                                   | embedded C programming                                                                              |
| CO4                                                                               | Interface various digital input/ output devices (pushbutton, thumb wheel switch, matrix keypad,     |
|                                                                                   | LED, LCD, SSD, stepper motor etc.) with the 8051 and develop programs for their control             |
| CO5                                                                               | Interface various Analogue input/ output devices (LM35, rain sensor, DAC, thumb wheel switch,       |
|                                                                                   | LED, LCD, SSD) with the 8051 and develop programs for their control.                                |
| CO6                                                                               | Analyze observations of each experiment based on the aim and objectives of an experiment.           |
| CO7                                                                               | Acquire the skill to design and build his /her simple circuit ideas                                 |

# T. Y. B. Sc. (C. S.) Semester VI Principles of Communication Systems

Course code: ELCMIT-361

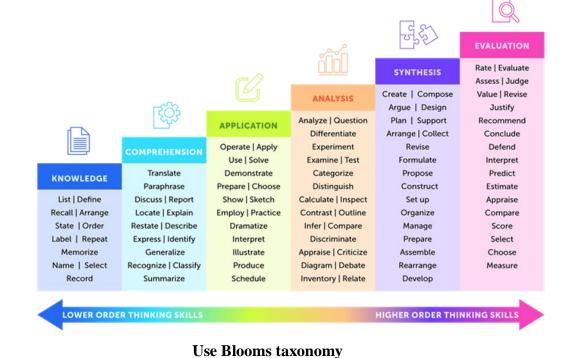
No. of Credits: 2

| Unit No. | Title and Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Module 1 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1        | <ul> <li>Introduction to Electronic Communication (9)</li> <li>Introduction to Communication, Elements of Electronic Communication system. Types of communication: simplex, half duplex, full duplex, baseband and broadband.</li> <li>Electromagnetic spectrum: Frequency, Amplitude, Noise, Signal and channel bandwidth.</li> <li>Serial and parallel communication, Types of Serial communication: synchronous, synchronous.</li> <li>Information Theory: rate of information (data rate, baud rate), channel capacity, Signal to noise ratio, Noise Figure, Nyquist theorem, Shannon theorem.</li> <li>Introduction and necessity of Error handling codes: Hamming code (in detail), CRC.</li> <li>Antenna: Introduction, Need, working Principle, Parameters of antenna: Gain, Directivity, Radiation pattern, Beam width, Bandwidth, front to back ratio (FBR).</li> </ul> |
| 2        | Modulation and Demodulation (9)<br>Introduction to concepts of modulation and demodulation. Need of Modulation, Modulation techniques: Analog<br>modulation: Amplitude, Frequency and Phase modulation, Equation of AM and FM Modulated wave,<br>modulation index and frequency spectrum, working of transistorized amplitude modulator and diode<br>demodulator. (Phase and Frequency modulation circuits are not expected).<br>Pulse Modulation, Pulse Amplitude Modulation (PAM), PWM, PPM (Concepts only).<br>FSK, QPSK, QAM.<br>Digital Modulation techniques: Pulse Code Modulation (PCM), delta modulation.                                                                                                                                                                                                                                                                |
| Module   | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 3        | Multiplexing, Multiple Access System and Spread Spectrum (7)<br>Introduction to Multiplexing Principles, Concept of Time division multiplexing and Code division<br>multiplexing.<br>Introduction to multiple access and corresponding access types: FDMA, TDMA, CDMA.<br>Concept and types of Spread Spectrum techniques: Frequency hopping Spread Spectrum, Direct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 4        | Sequence Spread Spectrum.<br>Wireless Communication Systems [5]<br>Introduction to wireless communication system, Need of wireless communication systems.<br>Introduction to mobile communication, Cellular concept, Working of GSM, Handover, Introduction<br>to GPRS.<br>Introduction to RFID, ZigBee, Bluetooth and Wi-Fi (Comparison Based on range, data rate,<br>frequency, Power).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Text and | Reference Books:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1        | <b>Communication Electronics: Principles and Applications</b> , by Frenzel, 5th edition, Tata McGraw Hill Publication.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 2        | <b>Electronic Communication Systems,</b> by George Kennedy, Bernard Davis, 5th Edition (2008), McGraw-Hill Education.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 3        | Data Communication and Networking, Forouzan, 5th edition, Mc Graw Hill publication.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

| Cou         | Course Outcomes (COs) On completion of the course, the students will be able to: |  |
|-------------|----------------------------------------------------------------------------------|--|
| <b>CO1:</b> | Demonstrate of Electronic Communication Systems.                                 |  |
| <b>CO2:</b> | Apply Information Theory to Communication Systems.                               |  |
| CO3:        | Analyze Modulation Systems.                                                      |  |
| <b>CO4:</b> | Implement and Compare Multiplexing Techniques.                                   |  |
| CO5:        | Understand Wireless Communication Technologies.                                  |  |
| CO6:        | <b>Demonstrate</b> Modern Communication Systems and Applications.                |  |

# T. Y. B. Sc. (C. S.) Semester VI

# **Electronics practical Lab-4**


# Course Code: ELCMIP-362

| Sr. No.  | Title of Experiment/ Practical                                                       |  |  |
|----------|--------------------------------------------------------------------------------------|--|--|
| Total 10 | experiments or 8 experiments along with one mini project (equivalent to 2 practical) |  |  |
|          | should be performed by the student.                                                  |  |  |
| 1        | Study of Radiation Pattern of an Antenna.                                            |  |  |
| 2        | Study the generation and detection of amplitude-modulated (AM) signals.              |  |  |
| 3        | Study the generation of frequency-modulated (FM) signals.                            |  |  |
| 4        | Generate and analyze a pulse amplitude modulated (PAM) signal.                       |  |  |
| 5        | Study the generation of ASK signals.                                                 |  |  |
| 6        | Study the generation of FSK signals.                                                 |  |  |
| 7        | Implement and analyze 3 or 4 bit pulse code modulation.                              |  |  |
| 8        | Study of Sampling theorem.                                                           |  |  |
| 9        | Error Detection and Correction using Hamming code.                                   |  |  |
| 10       | Study the principles of Time Division Multiplexing                                   |  |  |
| 11       | Understand the concept of Code Division Multiplexing and its application.            |  |  |
| 12       | To study the PN sequence generator.                                                  |  |  |
| 13       | Report writing on Wireless technologies like RFID, Zigbee, Bluetooth, and Wi-Fi.     |  |  |
| 14       | Study of Frequency Division Multiplexing.                                            |  |  |

| Course Outcomes (COs): On completion of the course, the students will be able to: |                                                                                              |  |
|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--|
| CO1                                                                               | Recognize need of various circuit elements in analogue and digital communication systems.    |  |
| CO2                                                                               | Acquire skills of studying and analyzing the responses of electronic communication circuits. |  |
| CO3                                                                               | Analyze observations of each experiment based on the aim and objectives of an experiment.    |  |
| CO4                                                                               | Evaluate observed outputs with expected theoretical outputs.                                 |  |
| CO5                                                                               | Discuss the need and requirement of electronic communication systems in daily life.          |  |
| CO6                                                                               | Acquire the skill of design and build his /her simple circuit ideas                          |  |

#### Question paper format for Semester End Examination NEP-2020

| Time:              | 02 Hours                                                                                                                              | Max Marks: 35                                 |           |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-----------|
| Theory<br>syllabus | question weightage will be given to each topic e                                                                                      | equivalent to number of lecturers allotted to | unit in a |
| Instruct           | ions to the Candidate:                                                                                                                |                                               |           |
| 1.<br>2.<br>3.     | All Questions are compulsory.<br>Figures to the right indicates full marks.<br>Use of log table and scientific calculator is allowed. |                                               |           |
| Q. No.             | Question format                                                                                                                       | Question Type                                 | Marks     |
| Q. 1               | Attempt <u>any EIGHT (8)</u> of the following: out of 10                                                                              | Knowledge based questions:                    | 8x1=8     |
| Q. 2               | Attempt <b>any FOUR (4)</b> of the following: <b>out of 6</b>                                                                         | Comprehensions based questions                | 4x2=8     |
| Q. 3               | Attempt <u>any TWO (2)</u> of the following: out of 3                                                                                 | Analysis and application based questions      | 2x3=6     |
| Q. 4               | Attempt <b>any TWO (2)</b> of the following: <b>out of 3</b>                                                                          | Synthesis and evaluation based questions      | 2x4=8     |
| Q. 5               | Attempt <b>any ONE (1)</b> of the following: <b>out of 2</b>                                                                          | Synthesis and evaluation based questions      | 1x5=5     |

